
JOURNAL OF COMPUTATIONAL PHYSICS 9, 26-52 (1972) 

Experiments with Equation Solutions 

by Functional Analysis Algorithms and Formula Manipulation 

JAMES N. HANSON 

Associate Professor, Mathematics and Computer Science Departments 
Cleveland State University, Cleveland, Ohio 44115 

Received March 16, 1971 

The generalizations, due to Kantorovich et al. of the well-known numerical algorithms, 
successive approximations, steepest decent, and Newton’s method; onto normed spaces, 
Hilbert spaces, and Banach spaces, respectively, have been tested on a variety of equa- 
tions occuring in engineering and physics. Analytical (nonnumerical) solutions to a 
second-order partial differential equation, a nonlinear first-order ordinary differential 
equation, van der Pol’s equation, a nonlinear damping problem, and a nonlinear two- 
point boundary value problem were obtained by symbol manipulation as, for example, 
provided by FORMAC. These algorithms result in relatively simple forms, e.g., poly- 
nomials in sines and cosines, depending on the choice of the initial approximation, and 
yield high accuracy in a few iterations and in seconds-to-minutes of machine time. 
It is suggested, on the basis of these experiments, that functional analysis algorithms, 
as developed by Kantorovich, evaluated by automatic formula manipulation can yield 
analytical solutions of any desired accuracy to a variety of functional equations. In this 
way, analytical solutions are obtained providing qualitative information while sub- 
sequent numerical evaluation avoids much of the art and inaccuracy associated with 
numerical procedures. 

With the recent development of symbol manipulation languages [I, 21 for digital 
computers, the sheer immensity of formal differentiation, integration, and algebraic 
manipulation should no longer be an impediment to utilizing many mathematical 
tools, for example, the exact truncation error, 

R(x, a, 10) = (l/9!) jZ (x - t)” (Go set t/&lo) dt, x > a, 
a 

for the Taylor series expansion of set x about x = a is preferable to the customary 
bounds used in such calculations. However, this calculation is regarded as im- 
practical due to the enormous, though straightforward, amount of manipulations 
needed to obtain R(x, a, 10) as an explicit expression in the symbols x and a. The 
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view taken in this paper is that this calculation, and others like it, should be 
regarded as simple obtainable results by virtue of the symbol manipulation capa- 
bilities of large digital computers. In particular, specialized formula manipulation 
languages such as FORMAC and ALPAK provide this type of operation [l]. 
An additional viewpoint taken in this paper, is that analytical solutions (non- 
numerical) of problems are better than numerical ones since they provide qualitative 
information such as dependence on boundary conditions or on parameters and 
avoid, as much as possible, the vaguenesses and uncertainties associated with 
numerical methods. Such must have been the thought of many applied mathe- 
maticians of the last century. Probably the best example of this spirit was displayed 
by Delaunay who over a period of years performed an extensive solution for the 
motion of the moon by the method of the variation of parameters applied to the 
perturbative function. Delaunay’s highly accurate solution has never been com- 
pletely used to construct ephemerides, however. Today his solution and solutions 
to similar problems could be routinely developed and redeveloped as needed for 
numerical evaluation [5]. 

The function analysis algorithms, for example, as developed by Kantorovich [3], 
et al. [4, 61 provide a rigorous basis for several general solution methods amenable 
to formula manipulation and which pertain to a wide range of the equation types 
occurring in physics and engineering. 

Many of the long-known numerical algorithms which have been used efficiently 
and understood only heuristically have, in comparatively recent times, received a 
rigorous and useful foundation by examining their extensions from finite Euclidean 
space to the abstract spaces of functional analysis. Possibly, the most useful example 
of this extension is Kantorovich’s generalization of Newton’s method to nonlinear 
operation between Banach spaces [3]. 

We will use the generalizations of the methods of successive approximations, 
steepest descent, and Newton’s method to solve, by formula manipulation, some 
typical partial and nonlinear ordinary differential equations. These solutions were 
performed by PLjl programs on an IBM 360/40 or an equivalent computer. We 
shall, as closely as possible, attempt to use the symbolism in Ref. [3]; in particular, 
8 shall denote the null element of a metric space and x* the exact solution to a 
problem. 

SUCCESSIVE APPROXIMATIONS 

To examplify the methods of formula manipulation applied to algorithms of 
functional analysis we start with the methods of successive approximations (SA). 
Consider the well-known contraction mapping theorem of Banach and Caccioppoli 
[71. 
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THEOREM. Let Sz be a closed subset of a complete metric space X, p a metric on X, 
and P: S + Q a contraction mapping, then there exists a unique solution x* E Sz of 
x = P(x) and, furthermore, {x,} --j x*, where x~+~ = P(x,)(n = 0, l,...) for any 
x,, E Q with speed of convergence 

p(x, , x*> < 41 - W PCQ, xl), (n = 0, L...), 

where 01 satisjies 

We apply this theorem to the differential equation X’ - $(t, X) = 0 where 
d(u, v) satisfies the usual existence theorem hypothesis. Let 

X = CY, 9 = P)([O, a]) 

and define 

and 

P(Nt>) = j; +(x(s), $1 ds, x(0) = 0 

PC? Y> = ,q=, I x0> - v(t)1 

for this problem. Then we compute 

= max 
=ro,a1 

/ j:, M%s), s)(x(s) - Y(S)> ds j 

d P(X, Y> . a oEFal I Ad& t)l > , 

where 0(s) is the intermediate value of the mean-value theorem. Hence we may 
assign 

01 = 44 = a B Egxal I A(4 t>l < 1, t , 

where we accomplish 01 < 1 by choosing a sufficiently small. As a concrete example, 
consider 

x’ - tanh t set x = 0, x(0) = 0, 

where we seek a solution on the interval t E [0, 11. We construct an N-degree 
polynomial solution starting from the zero polynomial x0(t) = 0. By replacing all 
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pertinent functions with their Maclaurin series truncated to the N-th degree, in 
this case the tan ht and set x, we insure that each iteration of 

x n+1 = P(x,) = 1” tanh s set x,(s) ds 
0 

will result in a polynomial. This iteration has been performed for N = 10, 15, and 
20, where at each iteration terms of degree higher than N were discarded. The 
results for N = 10 after 3 iterations are shown in Table I. The x-column contains 
the evaluation of the exact solution, 

x*(t) = sin-l(ln cash t) for 0 < t < cash-le = 1.656... . 

Similar results for N = 15 and 20 show an increase in accuracy of one and two 
decimals, respectively. 

TABLE I 

Solution of x’-tanh t set x = 0, x(0) = 0 by Successive Approximations 
on a lO-th Degree Polynomial 

t x0 Xl X x3 - x* 

.l 0 MM992 .004992 0 x 10-e 

.2 0 .019868 .019869 0 

.3 0 SW341 .044355 0 

.4 0 .011953 .078032 1 

.5 0 .120115 .I20405 1 

.6 0 .170137 .170967 8 

.7 0 .221219 .229273 50 

.8 0 .290794 .295014 231 

.9 0 .359930 .368086 886 
1.0 0 .434329 .448684 2920 

We next compare these results with the theoretical speed of convergence. 
Although the bounds occurring in this and subsequent convergence analysis can 
be easily shown to exist, they may not, however, be readily evaluated and, fre- 
quently, only as extravagant overbounds. This situation can often be remedied by 
evaluating bounds from a priori information obtained from a comparatively crude 
analog, graphical, or digital solution. For example, for +(u, t) = tanh t set u we 
compute 

~(a) = a tanh a * m,ax I set u tan u j = a tanh a set x(u) tan x(u), 
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where our crude approximate solution (possibly the first iteration) suggests the 
monotonically increasing nature of x(a), which is evident in this simple example, 
and where we have evaluated the uniform bound by now assuming !J to be com- 
posed of functions x(t) in P)([O, I]) and, in addition, contained in a narrow 
corridor about the crude approximation. It appears that only with such heuristics 
is it possible to use theoretical convergence information as an aid to obtaining 
explicit solutions. A crude solution yields x(.5) ‘v .12 and x(1) N .5; hence 
01(.5) N .028 and a(l) E .26, from which, and from Table 1 we obtain, for N = 10, 

#0(x,(.5), X*(.5)) < .12(10-2.69 

,$x,(l), x*(l)) < .58(10-.6”) 

which is in fair agreement with Table 1. We note that the polynomials contained in 
this way converge with corresponding high accuracy to the composite Maclaurin 
series of the exact solution 

x*(t) = sin-l(ln cash t) 

1 . 3 *** (2k - 1) 
= 

2 * 4 ... (2k) 

Ii1 j 2kfl 

= (l/2!) t2 + [(l/6!) - (1/2)(1/2!)2] t4 

+ [(l/S!) + (2/3)/(1/2!)3 - (l/2)(1/2! 6!)] + .**, 

where -cash-l2 < t ,< cash-I2 ‘v 1.313. In this case, the Maclaurin form for 
the solution proved efficient; however, other forms of a piecewise construction 

2 

x(t) 

1 

FIG. 1. Solution of x’ - sin((x + l)t), x(O) = 0 by successive approximations on an N-th 
degree polynomial. 
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such as spline functions [8] are more generally reliable. The difficulties in using a 
single polynomial as the solution form, as opposed to polynomial splines, is 
demonstrated in Fig. 1, where the previous procedure was applied to 

x’ - sin((x + 1) t) = 0, x(0) = 0 for N = 20, 30, 50. 

In the range t < .5, accuracy better than 1O-7 is observed in a few iterations. 
Fixed-point theory and the theory of contraction mappings provide an analytical 

basis for the automatic formula manipulation solution of many generic types of 
equations; for example, see Ref. [3] and the bibliography there. 

STEEPEST DESCENT 

The method of steepest descent (SD) possesses a more restrictive setting than 
does SA, in that its rigorous development usually requires that the mappings, 
associated with equations whose solutions are desired, are defined on Hilbert spaces 
rather than complete metric spaces. However, the SD method, whether it applies 
rigorously or not, seems to provide more rapid convergence than SA and apply 
to a wider variety of equations of engineering and physics. 

We describe the SD method: Let 4 be a real-valued function defined on a normed 
space X and let it be desired to find x* E X such that d(x) 3 &x*)(x E X) by 
constructing a minimizing sequence {x,} with 

lim 4(xn> = $i d(x), lim X, = x*, 
n+m n-a, 

provided rj is continuous with respect to x E X. We define 

&a, x0 2 4 = $(x0 + 4, 

where (X 1 x = x0 + ax, a > 0, z # 0} C X and construct E, the negative gradient, 
by minimizing 

II z 11-l (aB/a4la=o = II z 11-l k$ <4(x0 + 4 - WON 

over all possible directions z. The optimal step size along direction Z is then 
obtained as the smallest positive root X1 of @/aa = 0. This yields the second 
element of the sequence as x1 = x0 + h,z. This construction is summarized in the 
SD algorithm shown in Figure 2. 

The SD algorithm possesses wide heuristic application since, it seems, a minimum 
principle exists or can be contrived for nearly all problems of engineering and 
physics. The variational calculus suggests many of the minimizations related to 
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h satisfies 
aFb,xoad 

=0 
aa 

I 

x=x 
0 

+ xz 

FIG. 2. Steepest descent algorithm. 

ordinary and partial differential equations; for example, the problems in Ref. [9]. 
In many cases, the equation and the minimization problem have been shown to 
be equivalent in that their solution sets are the same (10-12). An example of the 
equivalency in a general setting is given by the following theorem [lo]: 

THEOREM. Let H be a Hilbert space and U: H -+ H be a self-adj,int linear 
operator with lower bound m = in f,+@ (Ux, x)/(x, x) > 0. Let x, y E H and define 

(1) ux = Y, 
(2) F(x) = VJX, 4 - 6, Y> - (Y, 4, 

then the solution x = x*, if it exists, of (1) minimizes F(x) and, conversely, the 

FIG. 3. Steepest descent algorithm for F(x). 
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element f, if it exists, which minimizes (2) satisjies (l), i.e., x* = P; furthermore, 
grad F = Ux* - y = 0 if and only if x* minimizes F(x). 

The SD algorithm applied to F(x) is shown in Fig. 3. 
Kantorovich [3] obtains the following convergence theorem for this algorithm: 

THEOREM. U: H + H is a self-adjoint linear operator on Hilbert space H with 
bounds 

M = y+: v > m = inf (ux, > 0; 
x, x x+0 (x, x) 

then the SD algorithm minimizes F(x)(i.e., solves Ux = y) for fixed y E H and 
converges to a unique element x* E H with speed of convergence 

II&z - x*,,Gu M--m R 
m ( 1 M-I-m ’ 

n = 0, l,... . 

As a concrete example of the SD method and one utilizing these theorems, we 
follow the developments of Kantorovich and Krylov [3, 121 in their treatment of 
the self-adjoint equation 

L(x) = - $- (a $1 - G (b -$) + cx = d, x IaD = 0, 

where it is assumed that a(s, t) and b(s, t) E P(D), c(s, t) and d(s, t) E C(O)(D), and 
a(D) > 0, b(D) > 0, c(D) >, 0; and we adopt the inner product 

(x7 Y) = s, j ( ysxs + Y& ds dt 

associated with the Sobolev norm 1) * /Iw on the space &j’)(D) of differentially 
continuous functions over D satisfying the boundary condition and such that 
I/ x (IO0 = (x, x)liz is uniformly bounded over D. The problem is transformed into 
the form of F(x) by defining 

Ux s --A-~L~ = -A-ld E y 

and computing 

F(x) = (Ux, x) - (x, y) - (y, x) = ... = 
ss [ax,2 + bx: + cx2 - 2~x1 ds dt, 

D 

where A-1 is the inverse (necessarily linear in this context [3, 131) of the Laplacian 
operator, Ax(s, t) = x,, + xtt . The resulting U has the required properties and 

58Ilglx-3 
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SD algorithm for the solution of Lx = d follows immediately and is shown in 
Fig. 4. 

If the functions a, b, c and d are replaced by their polynomial or piecewise 
polynomial approximations with the aforementioned properties, and if x,, is also 
polynomial, then the manipulations in Fig. 4 result in polynomials. In particular, 
the solution of --dz = Lx - d, z JaD = 0 is a polynomial of the form 

z(s, t) = (s2 + t2 - 1) p(s, t), 

A= 
+ z:)ds dt 

I, j&u; + bzf + cz*)ds dt 

FIG. 4. Steepest descent algorithm for Lx = d. 

where D has been taken as the unit circle D = {(s, t)l s2 + t2 = l}, and where 
p(s, t) is the general polynomial in symbols s and t of degree two greater than the 
degree of Lx-d. The coefficients of p(s, t) can be explicitly obtained symbolically 
from the method of undetermined coefficients. Similarly, the integrals in the 
expression for h can be explicitly manipulated; then evaluated exactly. 

Formula manipulation based on polynomial operations has been performed 
for the case where a = 1, b = 2(3 + s2 + 4t2), d = 2e(3 + s2 + 4P) and 

{(s, t)l s2 + t2 < l} = D 

starting with x0 = 2 - 2s2 - 2t2. The results of these calculations are shown in 
Table 2 for polynomial solutions of degree N = lo,15 and 20 and where iterations 
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beyond the IZ = 3,4 and 5, respectively, produced no further improvement. The 
exact solution is given by 

x*(s, t) = e - es2+t2. 

The execution time to construct Table II was 8 set on a CDC 3300. 

TABLE II 

The accuracy of polynomial solutions of Lx = d 

s=o N= 10 N= 15 N = 20 

t x3 - x* xp - x* xg - x* 

0 0 x 10-G 0 x 10-B 0 x 10-c 
.l 0 0 0 
.2 0 0 0 
.3 0 0 0 
.4 1 0 0 
.5 1 0 0 
.6 8 0 0 
.7 50 4 0 
.8 231 29 -1 
.9 886 178 -14 

1.0 2920 895 -176 

Theoretical lower and upper bound 2 and ?i?i on m and M for Lx = dare found 
in Ref. [3]; 

O<Si<m<M<?@. 

However, the E and M of [3] are difficult to compute and seem to be unreasonably 
poor approximations of m and M. If once again we use a crude approximate 
solution, such as the first iteration or an independent approximation, to hopefully 
narrow down the solution space to a subset in l&j”(O), then m and M can be 
estimated. From [3] we have 

Z = min[min a, min b], 
D D 

@ = 2 max[max a, max b, A max c], 
D D 

where 

A Z II x II-,” j-, j- I x I2 ds dt, x E D. 
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If A is estimated by selling x = x,, , then the speed of convergence is set by 

c M--m R 
R+ei 1 N (.96)“. 

However, if x1 + 1 x, - x,, / and x1 - j X, - x0 / are thought of as bounding 
surfaces for x*, then we may compute 

(Ux, x) SD j- (CZX,~ + bxt2 + cx2) ds dt ---Z 
(4 x) SD j- (x,2 + x3 ds dt ’ 

directly for these two extremes and assign w  to the larger such number and @i to 
the smaller. In our case the speed of convergence becomes 

M--m n 
i- M+iii 1 N (.25)“. 

Since the computing time per iteration is small, less than 1 set, accurate solutions 
can be obtained even where very large y1 are required. Experiments with the method 
of SD on algebraic linear systems with difficult to invert matrices have resulted in 
accurate solutions after from 50 to 100 iterations [14] of Kantorovich’s p-step 
variant of the SD algorithm [3, 151. The p-step variant would, surely, correspond- 
ingly increase the speed of convergence for the general equation satisfying the 
above theorems, in fact, Kantorovich has shown the convergence factor becomes 
KM - W(M + 41 w where p is a positive integer. The above-mentioned experi- 
ment with p = 2, 3,..., 10 clearly showed the efficiency of large p. 

THE FRECHET DERIVATIVE 

Many types of generalized derivatives have been invented to study nonlinear 
operators [16, 171. The Frechet derivative permits the generalization of Newton’s 
method: 

DEFINITION. Let X and Y be Banach spaces, open J2 C A’, Q’ C Y, x0 E Q, 
P : 52 + L?, define 

P’(xo)(x) = l$ $ [ml + tx> - fYx,n 

if P’(xo) is a linear operator in [X + Y] and if the limit converges uniformly for 
{x 1 11 x 11 = 1, x E X}, then the operator P’(xo) is the Frechet derivative of P(x) and 
P’(xo)(x) is the Frechet differential. 
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Similarly the n-th Frechet derivative is an n-linear operator which can be con- 
structed by y1 successive differentiations, for example, the second derivative can be 
computed from 

P”(xo)(x, X) = hi f [P’(xo + tiz)(x) - P’(xo)(x)], 

or 

P”(xo)(x, 2) = lii li+i (tt’>-l [&x0 + t’x + tq 

- P(xo + t’x) - P(x0 + t’3 + m3)l. 

Note that if P(x) is linear then P’(xO)(x) = P(X) and P”(x,)(x, Z) = 8. As an 
example, consider 

P(x) = x0 + x + $(t, x, x’) 

which by Taylor’s series with obvious assumptions on d(t, U, u) yields 

P’(xJ(x) = XI) + x + l%J($& x, x’>> 

= x” + x + hi + [$(t, x0 + Lx, x0’ + tx’) - +<t, x0 ) x,‘)] 

= x’ + x + lim f [+(t, x0 , x0’) + &(t, x0 , x,‘) tx 

- #dt, x0 9 x07 tx’ - 4c4 x0 7 x0’> 

= xn + x + (bu(t, x0 , x0’) x + &(t, XrJ , x0’) x’. 

Similarly, 

P”(x&, X) = &&cr, x0 , x0’) x22 t #&, x0 , xo’)(A5z’ + x3 + 9& x0 , x0’) d.3. 

We see that the operators P’(x,) and P”(xo) have the required properties. The 
inverse Frechet derivative is the solution of P’(xo)(x) = y and will be written 
[P’(x,)]-l y. It is clear, that except for simple forms of &t, U, a) and/or for judicious 
choices of x0 , the explicit construction of this inverse is a forbidding task; for 
instance, in the above example one must formally solve a second-order differential 
equation with variable coefficients. In the following sections on Newton’s method 
choices of x0 and simple transformations of P(x) will be used enabling [P’(x,)]-1 
to be exhibited and, furthermore, to be linear in [Y -+ X’J. 
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NEWTON'S METHOD 

Newton’s method, or the method of tangents, has been long used for computing 
real or complex zeros of real or complex equations. The extension of this concept 
to nonlinear operators on Banach spaces is mainly due to Kantorovich [3, 151. The 
form of the generalization is immediate; if P: X-P Y is a nonlinear operator 
between Banach spaces, then one is led to considering the following algorithms 
for computing x* such that P(x*) = 8, 

X n+1 = & - v%Jl-l mJ or P’(x,)(x,+~ - xn) = -P(xn), 
X n+1 = x?z - P’c%N-l w&J or WGJ(X~+~ - xn) = -PC4 
X - x, - FP(x,). n+1 - 

The first algorithm is known as the original Newton’s method (ONM), the second 
the modified Newton’s method (NMN), and the last we shall call the generalized 
Newton’s method (GNM). The GNM represents an additional simplification of the 
ONM in that Fis a constant operator approximating [P’(x,)]-l but not requiring 
the construction of P’(xJ or [P’(x,J-l as does the MNM. A summary of 
Kantorovich’s theory, as found in Ref. [3], is given in Table III. These theorems 
provide information concerning the uniqueness, existence, speed of convergence, 
and the region of accessibility from the initial approximation x0 . Additional 
results on the GNM with less restrictive hypotheses can be found elsewhere; for 
example, see Antosiewicz [18]. There are numerous examples of Newton’s method 
used in a totally numerical manner to solve functional equations [6, 19,20,22,23]. 

Theorems 7 and 8 and a special case of Theorem 13 will prove to be of special 
interest in applying Newton’s method to ordinary differential equations. We note 
the special case of Theorem 13 formed by decomposing P(x) in Theorem 8 into 

P(x) = 44 + R(x), 4GJ = 0, 

where the solution of n(x) = 6’ is ‘close’ to that of P(x) = 9 and where [+(x&l-’ 
is linear. If in Theorem 7 we set r = [4(x0)1-l, then the hypothesis conditions and 
conclusions become, respectively, 

H(3)’ II ~P(xo)ll = lI[e%)l-l NJ%)ll G ‘I 
H(4)’ II rP’(x,) - Ill = ll[~‘(xo)l-l R’M < 01 < 1 
H(5)’ Il[~‘(xW ~“Wll < K (x E ,n>, II[71.‘(xJ1-1 R”(x)ll < L (x E Q) 
WJ)’ h = (K + L)(l - a)-” r < l/2 

H(7)’ r > r,, = (1 - d-)(1 - a)-’ q/h 

WY II xn - x* /I < 2-n(2h)zn (1 - a)-’ v/h, ONM 

C(4)’ Ilx, - x* /I e [l - (1 - a) ~‘?=%]~+l (1 - a)-” T/h, MNM 
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TABLE III 

Theorems on Newton’s Method 

Legend: X and Y are B-spaces 
S;)‘Q = {x 1 /I x - xg I/ 4 R) c x 
B, = 4 = {x 1 I/ x - x0 I/ < r} C X, (r < I?) 

P: QR-+Y 
s: BR-fY 
4: [to, t’] + R’ (t’ - to = r < R), (4(t) = t $ C&(t)) 

x, E 8, : initial approximate solution to x = S(x) of P(x) = 0 
x, E X iterates 
x* E Sr, : solution to x = S(x) or P(x) = 8 
t*: least root of e(r) of #(t) in [to, t’], t,, corresponds to x0 . 

Successive approximations (SA) for x = S(x): x,+~ = S(x,) 
Modified Newton’s method (MNM) for P(x) = B: x,+~ = x, - [P’(x,)]-lP(x,) 
Original Newton’s method (ONM) for P(x) = 0: x,+~ = x, - [P’(x,,)]-lP(x,) 
Generalized Newton’s meth(GNM) for P(x) = 8: x,,+~ = x, - I’P(x,,) 

Theorem Hypothesis Conclusion 

Defy majorant 
function 

(1) II e%) - x0 II < Wo) - Ll (1) 4 majorizes S 
(2) II x - XII II Q t - I, 3 II s’(x) (I < C’(t) in [to , t’]. 

Th(1): SA 

Th(2): SA 
Uniqueness 

(1) S has cont. der. in Q, 
(2) 4 is diff. in [to , t’] 
(3) 4 has a root m [t, , t’] 
(4) 4 majorizes S 
(5) x0 E Qo * 

(1) There exists x* E Q, 
(2) SA conv. to x* 

for every x0 f  s2, 
with x,, E Q, 

(3) II x* - x0 II < t* - to 

(l-5) Same as (l-5) in Th(1) 
(6) 4 has unique sol. in [to, t’] 
(7) W’) < t’ 

(1) P has cont. second der. on 0s. 
(2) # E P)[t, , t’] such that. 

(l-3) Same as (l-3) 
in Th(1) 

(4) x* is unique in Q, 

(1) there exists x* E 8, Th(3): MNM 

(3) there exists r, = [P’(x,)]-l c [Y--f x] 
(2) MNM conv. to x* 

for every x0 E Q0 
(4) c, = -l/f&) > 0 with x, E Sz, 
(5) II ~oP(xo~ll < colG(hJ (3) II x* - x0 II < t* - cl 
(6) II x -xi, II < f  - to a II ~d”‘(x)ll Q Cd”(t) 
(7) 4 has a root m [to , t’] 

Th(4): MNM 
Uniqueness 

(l-7) Same as (l-7) in Th(3) 
(8) W’) < 0 
(9) $(~t) has unique sol. in [to, t’] 

(l-3) Same as (l-3) 
in Th(3) 

(4) x* is unique in Q0 

Table continued 
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TABLE III (continued) 

Theorem Hypothesis Conclusion 

Th(5): ONM (l-7) Same as (l-7) in Th(3) 

Th(6): ONM 
Uniqueness 

(l-9) Same as (l-9) in Th(4) 

Th(7): MNM and (1) P has cont. second der. in Q, 
ONM for quadratic (2) there exists I’, = [P’(x,)]-l E [Y + x] 
majorant (3) II ~JYx,)ll G 9 

Uniqueness 

Th(8): Alternate 
form of Th(7) 

Uniqueness 

Th(9): GNM 

Uniqueness 

(5) h = Kq Q l/2 

(6) r > r, = ( 7 )  If, in addition, h < l/2 and 

r < r1 = (1 + Jl - 2h)~/h or 
h= 1/2andr<rrl. 

(l-3) Same as (l-3) in 
Th(3) for ONM. 

(l-3) Same as (l-3) in Th(5) 
(4) x* is unique in a0 

(1) there exists x* E Q0 
(2) MNM or ONM conv. to 

x* for every x0 E Sz, with 
&I E f&l 

(3) II x* - x0 II Q r. 
(4) for MNM, ONM, resp.; 

11 x* -x,/I < 2-“(2/2)%7/h 
I/x* - x,ll 
< (l-J1 - 2/$+//h 
if h < l/2 

(5) x* is unique in Q, 

(l-4) Same as (14) in Th(7) (1) II To II < B 
(2) II fkJll d 7’ 
(3) x E s;r, - II P”(x)ll Q K 

h = K’B’2,,’ 
I) = B’q’ 
K = B’K 

rO , r1 = (1 F Jl - 2h)B’$/h 
(4-7) Same as (1, 4-6) in Th(7) 
(8) Same as (7) in Th(7) (5) Same as (5) in Th(7) 

(1) P has cont. second der. in s2, (1) there exists x* E Q, 
(2) r E [Y + X] such that: (2) for ONM I/ x* - x, II < 
(3) II ~pw Q 1 2-n(2&)2”(7$)(1 - q-1 
(4) II ~f%cJ - Ill G 6 (3) GNM conv. to x* for 
(5) x E D, * II myx)ll Q R every x0 E Q, with 
(6) h =j??j(l - S)-z < l/2 S < 1 &ZE-Qll 

(7) r > P, = (1 - 2/1--2h)(f/h)(l - 8)-l (4) for GMN for h < l/2 
(8) If  in addition h < l/2 and 11 x*-x,/1 < l/h[l- (1 --s) 

r < PI = (1 + V%Z)(q.h)(l-S)-l or dl - 2h]“+‘?j(l - s)-z 
r< i,andh = l/2 (5) x* is unique in Q0 

Table continued 



FUNCTIONAL ANALYSIS ALGORITHMS AND FORMULA MANIPULATION 

TABLE III (continued) 

41 

Theorem Hypothesis Conclusion 

Th(l0): Sensitivity (l-6) Same as (l-6) in Th(7) 
with respect to (7) &l’ E 4 
initial approximation (8) II x”’ - xn II < E = 1 - 2h/4k 

(1) MNM and ONM COW. 
from x0 

(2) h > 4 ~‘2 - 11/2 w .16 

Th( 11): Range 
of x* in terms 
of x0 and x1 

(l-4) Same as (l-4) in Th(7) 
(5) II ~oml)ll < 71 

x1 = xg - r,P(x,) 

Th(12): 
Mysovskikh 
extension of Th(7) 

Th(13): 
Decomposition 
of P(x) 

(l-2) Same as (l-2) 
in Th(7) 

(3) II x* - Xl II 

< (1 - Jl - 2h) 71 

h, 1 - K? 
(4) Th(l1) applies where 

Th(7) does not if hl Q l/2 
and h > l/2 

(l-2) Same as (l-2) in Th(7) (1) There exists x* E Q, 
(3) II fY%)ll < 7)’ (2) ONM conv. to x* for 
(4) There exists r(x) 3 [P’(x)]-’ e [Y + X] every x0 E Q, with x, E Sr, 

for every x E Q, 
(5) x E Qo - II WI Q B (3) for ONM ]I x* - x, II < 

Bq, WY-’ 
1 - (h/2)2” 

(6) x E 4 * II P”Wll < K’ 
(7) h = B2K‘$ < 2 

(8) r > r’ E By’ x;=, (h/2)a’-1 

(1) Introduce p E [Y -+ Y] such that P(x) (1) P(x, p) = fl has a sol. 
becomes P(x, p) = m(x) + fiR(x) = 0 x*(p) f  Q, for sufficiently 
where n:X --, Y, R:X --f Y and large r. 
P:X x Y--t Y such that: 

(2) x and R have cont. second der. in Q, 
(3) mo , fl) = n(x3 = e 
(4) There exists F, = [r’(x,,)]-l E [Y -+ X] 
(5) II ro II < B 
(6) II %G,N G 7, II Wx3ll < c 
(7) x E sz, * II 64ll < K II R”W < 2 

(8) h, 3 
&W + z II P II) II P II < 1,2 

(1 - SB II P ID” .. 
(9) d II P II < 1 
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It should be noted that in Table III, the potential speed of convergence of these 
methods decreases from the top to the bottom of the table, since one has the 
possibility of picking a majorant function in Theorem 1 to form sharp bounds, 
where as in subsequent theorems this choice and other options are sacrificed in 
favor of standardization of hypothesis by using a widely applicable majorant which 
in fact may provide only loose bounds. 

NEWTON'S METHOD AND x' = $(t,x) 

We shall apply Theorem 7 of Table III to 

P(x) = x’ - $b(t, x) = 0, x(0) = 0 

in order to obtain a solution x* E G)[O, a]. It is useful to norm this space with 

II x II = ,gy I 40 + h ,Faa”] I x’(t)l, A>0 

with which, by straightforward manipulations, we obtain 

THEOREM. Let $(u, t) be continuous in both its arguments in 

8 = ((24, t)l t E [0, a], 1 u - x,(t)/ < 6, x0 E P)[O, a], x,(O) = 0} 

and have a continuous second derivative in u in this domain: and let 

(1) I K%(t), t>l d q’ (1 E K4 al) 

(2) I h&,(t), t)l G Ml 0 E LO, al) 

(3) I A&, t)l < Mz (64 t> E -Q) 

(4) h, = ~1M2a2e4aM~ < 112 

(5) S > r. = (1 - dl - 2h,) ezaM1aq’/hO . 

Then 
x’(t) = 4(x(t), t> x(0) = 0 

has a solution x*(t) in t E [0, a] where I x*(t) - x0(t)/ < r,, ; and a unique solution if 

h, < l/2 and S < r, = (1 + d/1 - 2h,) ezaM1aq’/h,, . 

Furthermore, the modjied method and original methods are represented by 

&+1 - du(% 9 t> x,+1 = -&dxo , t) x, + &%a , 0, 

&+1 - b&n 9 t> XT&+1 = -G<&z > t) &a + $<&, 0, 
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with speeds of convergence, respectively, being 

where 

II x* - x, /I < (1 - 2/j-----2)n+1 $/h, 

II x* - x, 11 < 2-n(2h)2n $/h, 

h = (aezaMl + M2 M2r’ < l/Z 

# = exp (jl Cu(xoM, s) ds. 

The essential feature of the proof of this theorem is that the inverse of P’(x,,) may 
be explicitly formed by applying the integrating factor # to P’(xJ = y. An outline 
of the proof may be found in Ref. [3]. 

Newton’s method for P(X) = x’ - $(t, x) = 0, x(0) = 0 has the form 

x:+1 + Pn(t) x,+1 = 4n(t), 

where for MNM pJt) = PO(t). Hence we have an explicit expression for xn+l(t), 

x,+,(t) = exp (-s p,(f) dt”) f qn(t’) exp (J‘ pJt”> df) dt’. 
0 

Now if rj(t, U) is approximated by a polynomial or piecewise polynomial, then pn 
and qn are polynomial provided x, is polynomial. Furthermore, the antiderivative 
of a polynomial is a polynomial and exponentiation of a polynomial is the com- 
position of two polynomials where exp(z) ,has been replaced by a polynomial form. 
Once again we have chosen x’ = tanh t set x, x(0) = 0, in order to test the ONM, 
MNM and GNM where tanh t and set x have been replaced by their truncated 
Maclaurin series of degree N. In these calculations, we set r = [P’(z)]-l y for 
z = t. For all three algorithms we have taken x0(t) as parabolas, x0(t) = at + /3t2, in 
the right half plane and passing through the origin. By virtue of the monotonicity 
of I xo(Ol, A+. , and qLu , we compute 

1 +(x0 , t)l < tanh a set x0(u) = q’, 

I &(x0, t)l < tanh a set x0(u) tan I xo(u)l = iV1 , 

I qSUU(u, t)] < tanh a set ~,(a)(1 + 2 tan2 x0(u)) = A4, , 
h,(u) = u2 tanh2 a se? ~,(a)(1 + 2 tan2 x0(u)) 

x exp(4u tanh a set x0(u) tan / x,(u)l), 
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1 Z/J I < exp[a tanh a set x0(u) tan 1 ~,(a)~] = eaM1, 

/ # / 3 exp[a tanh a set x.,,(u) tan / x,(u)/ > e-O”l, 

x = 1 + uMle2aM1 

h(u) = (uezoM1 

from which we may write 

II x?z - x* II G m 4, 

where E(u, n) denotes the right-hand side of the speed of convergence inequalities. 
We note that for all X > 0 we can find a > 0 such that h(a) < l/2 (and hence 
h,,(Z) < l/2) and thereby guarantee convergence for values of a < 5. Computer 
calculations, for h + 0, indicate convergence of MNM for all x,,(t) = at + /3t2 
lying within the sector - 1.2t < x0(t) < 1.2t, 0 < t and within 

-14t < x()(t) < 14t, 0 < t 

for ONM. A numerical analysis of h(u; a, ,f3) ,( l/2 verify that one should expect 
such a pattern of convergence. Even for 01 and /I corresponding to x0(t) far from 
x*(t) = sin-l(ln cash t), convergence in a few iterations to 6 places was observed 
for 0 < t < 1. We observed earlier that the Maclaurin series diverges for 
t > 1.313*... 

NEWTON'S METHOD AND x" + x +$(&x,x') = 0 

We shall apply our version of Theorem 8 for P(x) = r(x) + R(x) to 

xn + x + $(t, x, x’) = 0, x(0) = x’(0) = 0. 

Solutions to van der Pol’s equation, a nonlinear damping problem and a two-point 
boundary value problem (TPBVP) will be performed and compared to highly 
accurate numerical integrations, and also analyzed in terms of the theoretical 
speed of convergence. Note that the conditions x(0) = x’(0) = 0 for n(x) = x” + x, 
insures that [&(x&]-l is linear, as can be verified by a variation of parameters 
solution of &(x0) x = y. Here we seek solutions in U2)([0, a]) and select the norm 

and note that 
t t 

[T/(X,)]-l y = sin t 
s 

y(s) cos s ds - cos t s 
y(s) sin s ds 

0 0 
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from which we can compute, straightforwardly, 

ll[~‘(-h)l-l z II < 22 max I y I + 2a max I Y I + (2~ + 1) max I Y I 
= k ,g;l IY I> k = 4a + h(2a + 1). 

We next compute the bounds in conditions H(3)‘, H(4)‘, and H(5)’ where 
R(x) = +(t, x, x’) and I$ = +(t, u, v). Using the earlier calculations of Frechet 
derivatives, we have 

ll[~‘(x,N-l %o)ll < k ,$?;I I (bk xo 3 xo’>l = rl 

I![~‘(xo)l-’ Wxo) 2 II < k ,g;I I A&, xo , ~0’) z + 4vk xo , ~0’) z’ I 

G kb-- I AAt, x0, xi>1 I z I + max I Mt, x0, xol)l I z’ II 

< Wax I #J& x0 , xo’)l + max I q&it, x0 , xo’)ll II z II, 

where in this last step we have used the definition of /I z 11. Hence we may take 

llI~‘(~o~l-~ W-d d kLt~yI I 4u(t, xo > xo’>l + tz,y, I +&, xo , xo’>ll = (y. < 1. 

Similarly, 

Il[n’(~,)]-~ +‘(x)jl = [ 6) I = 0 = K, x E Q. 

ll[~‘(~orl m)(z, al 

and hence 

ll[~‘(~o>l-~ R”(x>ll d 

VAN DER POL'S EQUATION 

We seek a solution to van der Pol’s equation y” + y + p(y2 - 1) y’ = 0, 
TV > 0 for y(O) = 1, y’(O) = 0. If we transform y by y = x + 1, then we obtain 
the required boundary conditions x(0) = x’(0) = 0 and 

d(t, 24, u) = p[(u - 1)2 - l] V - 1. 
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Therefore, 

r]=k,a=K=O 

and 

L = pk[2 max I x’ / + 4 max 1 x - 1 I] -N 2pk(a + 6), 

where it can be shown that j x j 5 2 [19] and where the existence of ~7 = max I x’ 1 
follows from the Levinson-Smith limit cycle Theorem [24]. We next obtain E(u, n), 
for MNM and for X -+ 0, 

h = ho = 2pk2(a + 6) = 32a2p(a + 6) < l/2. 

Hence for every p there exist a > 0 such that h, < l/2 and convergence is guaran- 
teed at less for a small interval near the origin. If we had computed h,(a) directly 
from Theorem 8 for the particular form of +(t, U, v), somewhat larger values of a 
would satisfy h,(a) < l/2. Actually, we will see that the MNM seems to converge 
rapidly for arbitrarily large a. 

If x,(t) = 0, then the MNM for x = y - 1 becomes 

I 
t 

X - cos t - 1 - p sin t a+1 - cos s(x, + 2) xnxla’ ds 
0 

+ p cos t Jt sin s(x, + 2) x,x,’ ds. 
0 

The first and second iterations are 

x1 = cos t - 1, 

x2 = cos t - 1 - p sin t($ cos4 t - 4 cos2 t + *) 

+ p COS t(@ - 3% sin 2t - * sin3 t COS t). 

It is apparent, starting with x0 = 0, that all subsequent iterations will involve 
integrals of the form t” sinm t COP t where sines and cosines of multiple angles are 
replaced by sums of powers and products of sin t or cos t. This procedure has 
been performed by symbol manipulation and then numerically evaluated. Some of 
these results are summarized in Fig. 5. 

The verticle axis shows the norm of the error of x, , for p = .l, .5, 1, 5, 10, 15 
and of n = 2, 3, 4, 5 for p = .l. Roughly speaking, each successive iteration 
decreases the error by a factor of 10 and increases the range where 1 x, - x* ] < 1O-2 
by a factor of 2 or 3. Note each iteration contains unbounded terms that accurately 
account for the nonperiodicity of x*(t). It is known that for each value of p there 
is a periodic solution [24]. Newton’s method can be used to obtain this solution by 
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Krylov, Bogoliuboff 

approximations,/ I /7 / 

.l 1 10 100 

FIG. 5. The solution to van der Pal's equation by Newton’s method. 

choosing x0 to be a periodic function with argument ot and applying conditions 
x(d) = x(wt + 2~) and x’(d) = x’(wt + 27~) in order to determine the solution 
and the parameter w  symbolically. The resulting manipulations can be identified 
with those of the classical perturbation method for developing x and w  in power 
series of p [25]. For comparison, Fig. 5 shows the error of the first and second 
Kryloff-Bogoliuboff approximations [26]. Other approximations of van der Pol’s 
equation may be found in [19, 20, 251. 

NONLINEAR DAMPING PROBLEM 

We next consider the nonlinearly damped system, 

We again make the transformation y = x + 1 and obtain 

P(x) = x” + 9x + px’2 + v = 0, x(0) = x’(0) = 0. 
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The circumstances of Newton’s method are easily shown and the MNM algorithm 
is 

%a+1 = cos vt - 1 + 5 [cos yt j: x2 sin vs d.s - sin vt j: xz cos vs d.s]. 

Setting r(x) = X” + v2x and R(x) = px12 + v2 we obtain, for MNM with h -+ 0, 

I/& - x*/I < & (1 - d1 - I~,LLcz)~+~, 16~~2 < l/2 

from which we are guaranteed convergence for all v > 0 and p and a corresponding 
a > 0. 

A symbolic evaluation of x, was performed for x0 = It. The case I = 0 yields 
sums of terms of the form tk sin” vt” cosn vt whereas 1 # 0 produces sums of 
e-9” sinW vt co9 vt, the latter being a result which would be more desirable on 
physical grounds. The cases I = 0 and I = .l for v = 1 and p = .Ol were examined 
for II = 1, 2, 3,4, 5 and found to give results similar to those for van der Pal’s 
equation in Fig. 5. Other approximate solutions to this equation are found in 
[19, 20, 261. 

TPBVP 

As a last example of Newton’s method, we consider P(x) = x” - e” = 0, 
x(0) = x(1) = 0. Newton’s method seems particularly well adapted to TPBVP’s 
since [P’(x,)]-l is automatically linear, which is not the case ordinarily. For 
P(x) = x” + $(t, x, x’), 4 = +(t, u, v) we have 

P’(xo)(x) = xv + &(t, x0, x0’) x’ + &(t, x0, x’) x = y 

and if z, and z2 are linearly independent homogeneous solutions, then, by variation 
of parameters and applying x(0) = x(l) = 0, 

[P’(x,)]-l y = cz1 j’ Zly ds + C/Z:, j’ Z2y ds + Z1 1’ Zly ds + z2 j’ Z2v ds, 
0 0 0 0 

where 

z, = -z,/(z1z2’ - Zl’Z2), z, = z1/(z1z2’ - z1’z2), 

c = Zl(l)/Ml) z,(O) - Zl@>), c' = -c,z,(O)/z2(0); 

hence, if z,(l) z,(O) - z,(O) # 0 and z,(O) # 0, then [P’(x,)]-l is linear, 
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For P(X) = x” - e”, x(0) = x(l) = 0, and choosing x0 = 0, we obtain 

49 

X %+I = sinh t . (1 - t + 1: C+(s) &), 

which converges in one step to the trivial solution x*(t) = 0. 
To obtain a nontrivial solution, we note the form of 

P’(xo)(x) = x” - ezox, 
and choose 

x,(t) = ln[kt(t - 1) + I], k < 4, 

which yields [P’(x,)]-l as the solution of 

x” - (kt2 - kt + 1) x = y, x(0) = x(1) = 0. 

This equation has an ordinary point at x = 0 and hence we can obtain two 
homogeneous solutions of the form C,” c#. The recursion relationship is 

c. = & [k(cg--p - ci-3 + Q-J, z i = 2, 3,..., 

and the homogeneous solutions are 

z1 = f a,(k) ti, z2 = f bJk) ti, 
0 

where, for example, 

HOW = 1, 

a,(k) = 0, 

dk) = ;, 

a,(k) = - ; k, 

dk) = $ (k + ;)> 

1 
a,(k) = - 24 k 

0 

b,(k) = 0, 

WI = 1, 

b,(k) = 0, 

b,(k) = ; , 

b,(k) = - ; k, 

b,(k) = & (k + $9 

u,Ak)=$(k2+;k+;), b,(k)=&k, 

a,(k) = - & (5k + $2 W) = & (; k2 + ; k + A), 

5W9/1-4 
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Z, and Z, may then be formed by the appropriate multiplication, subtraction, and 
division of infinite series, and c and c’ by summing the rapidly converging sum 
for zI( 1) and z,(l). Thus [P(x,)]-l y is expressed by polynomial operations provided 
y is a polynomial. Polynomial symbol manipulation with the [P(x,)]-l just de- 
scribed was applied to the MNM for this problem: 

x,+~ = [P’(x,)]-l [(kP - kt + 1) x, - ezn], 

where e”n is replaced by its Maclaurin series in x, . Values of k = .I and 1 were 
used. Convergence to 6 places resulted in 2 and 4 iterations, respectively, but only 
for polynomials of degree larger than 20. Comparison was made with the exact 
solution, 

x*(t) = --In 2 + 2 In ic set [g (t - $11, c = 1.336055 ... 

Bellman and Kalaba [23] have used the MNM and the ONM numerically and 
Varga [27], has used Hermite polynomials to obtain very high accuracy for the 
solution of this problem. 

SYMBOLIC vs. NUMERICAL SOLUTION 

The advantages of symbolic solutions as compared to purely numerical solutions 
are: (1) They are symbolic, (2) they provide qualitative information, and parameter 
study, (3) they can incorporate automatic formula simplification, and (4) thereby 
they yield a solution which can be efficiently evaluated numerically and be com- 
paratively devoid of round-off error, (5) symbolic computer programs, say in 
FORMAC, are simpler and require much less computing art on behalf of the 
programmer than do strictly numerical programs, (6) the symbolic programs herein 
required far less machine time than numerical calculations yielding the same 
accuracy, when compared to Runge-Kutta and relaxation solutions. 

On the basis of the above experiments it may be said that formula manipulation 
of functional algorithms provides a highly efficient method for solving the wide 
variety of functional equations occurring in engineering and physics. Mundane 
solution forms, i.e., initial approximations, used here yielded high accuracy in a 
few iterations. Other solution forms, such as piecewise polynomial or trigono- 
metric forms [8], would surely result in substantially sharper results. However, the 
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purpose of this paper was to examine the solution method and to show that, even 
using mundane solution forms, accurate solutions are readily obtainable. It is 
expected that solutions, by these methods, of partial differential equations, integral 
equations, integrodifferential equations and differential-difference equations would 
result in corresponding accuracy. An interesting prospect would be to linearize a 
nonlinear partial differential equation by Newton’s method and to attempt to 
solve the successive linear partial differential equations by SD or SA. In addition 
to the SA, SD, MNM, ONM and GNM, other functional algorithms may be used; 
for example, the generalized regula-falsi method [6], higher order Newton’s 
method [28] and the results of Antosiewicz [18] and others [2, 26, 27, 291. Lastly, 
we should recognize the heuristic value of these methods in that they provide 
solutions to a far wider class of problems than rigorous theory would indicate. 
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